少一尾的九尾猫提示您:看后求收藏(愛看小說網2kantxt.com),接着再看更方便。
(5,12,13)(7,24,25)(9,40,41,)......2n+1,2n^2+2n,2n^2+2n+1.......
这些是最最最基础的数学,也不知道还有多少人记得。
恐怕十分之一的人都没有,更别提与勾股数相关联的其他数学公式定理与数据了。
如果在数学上没有天赋,学习起数学来,恐怕会相当痛苦。
那种一堂课掉了一支笔,捡起来后,数学就再也没跟上过节奏的,也不是什么离奇的事情。
.......
宿舍中,徐川一边整理着米尔扎哈尼教授留给他的稿纸,同时也在整理着自己近半年来所学习的一些知识。
“代数几何的一个基本结果是:任意一个代数簇可以分解为不可约代数簇的并。这一分解称为不可缩的,如果任意一个不可约代数簇都不包含在其他代数簇中。”
“而在在构造性代数几何中,上述定理可以通过 Ritt-吴特征列方法构造性实现,设S为有理系数 n个变量的多项式集合,我们用 Zero(S)表示 S中多项式在复数域上的公共零点的集合,即代数簇。”
“.......”
“如果通过变量重新命名后可以写成如下形式:
A?(u?,···, uq, y?)=I?y??d?+y?的低次项;
A?(u?,···, uq, y?, y2)= I?y??d?+y?的低次项;
······
“Ap(u?,···, Uq, y?,···, yp)= Ip?Yp+Yp的低次项。”
“......设 AS ={A1···, Ap}、J为 Ai的初式的乘积.对于以上概念,定义SAT(AS)={P|存在正整数 n使得 J nP∈(AS)}........”
稿纸上,徐川用圆珠笔将脑海中的一些知识点重新写了一遍。
今年上半年,他跟随着的德利涅和威腾两位导师,学到了相当多的东西。
特别是在数学领域中的群构、微分方程、代数、代数几何这几块,可以说极大的充实了自己。
而米尔扎哈尼教授留给他的稿纸上,有着一部分微分代数簇相关的知识点,他现在正在整理的就是这方面的知识。
众所周知,代数簇是代数几何里最基本的研究对象。
而在代数几何学上,代数簇是多项式集合的公共零点解的集合。历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。
20世纪以来,复数域上代数几何中的超越方法也有重大的进展。